Cross-Domain Meta-Learner for Cold-Start Recommendation

نویسندگان

چکیده

The cold-start problem is a major factor that limits the effectiveness of recommendation systems. Having too few available interaction records brings series challenges when predicting user preferences. At present, there are two main kinds strategies for solving this from different perspectives. One cross-domain (CDR), which introduces additional information by domain knowledge propagation with transfer learning. However, CDR methods follow traditional training processes in machine learning and cannot solve typical few-shot perspective optimization. other type has recently emerged based on meta-learning. Most these approaches focus only generating meta-model to perform better new tasks ignore improvements information. Therefore, it necessary design novel approach both meta-optimization. To achieve goal, meta-learner (MetaCDR) proposed. In MetaCDR, we meta-transfer module connect networks. addition, introduce pretraining strategy ensure its efficiency. experimental results show MetaCDR performs significantly than state-of-the-art models variety scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-Domain Recommendation for Cold-Start Users via Neighborhood Based Feature Mapping

Collaborative Filtering (CF) is a widely adopted technique in recommender systems. Traditional CF models mainly focus on predicting a user’s preference to the items in a single domain such as the movie domain or the music domain. A major challenge for such models is the data sparsity problem, and especially, CF cannot make accurate predictions for the cold-start users who have no ratings at all...

متن کامل

Representation Learning for cold-start recommendation

A standard approach to Collaborative Filtering (CF), i.e. prediction of user ratings on items, relies on Matrix Factorization techniques. Representations for both users and items are computed from the observed ratings and used for prediction. Unfortunatly, these transductive approaches cannot handle the case of new users arriving in the system, with no known rating, a problem known as user cold...

متن کامل

Cross-Domain Collaborative Recommendation in a Cold-Start Context: The Impact of User Profile Size on the Quality of Recommendation

Most of the research studies on recommender systems are focused on single-domain recommendations. With the growth of multidomain internet stores such as iTunes, Google Play, and Amazon.com, an opportunity to offer recommendations across different domains become more and more attractive. But there are few research studies on cross-domain recommender systems. In this paper, we study both the cold...

متن کامل

Transfer Learning from APP Domain to News Domain for Dual Cold-Start Recommendation

News recommendation has been a must-have service for most mobile device users to know what has happened in the world. In this paper, we focus on recommending latest news articles to new users, which consists of the new user coldstart challenge and the new item (i.e., news article) coldstart challenge, and is thus termed as dual cold-start recommendation (DCSR). As a response, we propose a solut...

متن کامل

Cold-start recommendation through granular association rules

Recommender systems are popular in e-commerce as they suggest items of interest to users. Researchers have addressed the coldstart problem where either the user or the item is new. However, the situation with both new user and new item has seldom been considered. In this paper, we propose a cold-start recommendation approach to this situation based on granular association rules. Specifically, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2022

ISSN: ['1558-2191', '1041-4347', '2326-3865']

DOI: https://doi.org/10.1109/tkde.2022.3208005